首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12394篇
  免费   1262篇
  国内免费   2237篇
  2023年   355篇
  2022年   344篇
  2021年   537篇
  2020年   553篇
  2019年   626篇
  2018年   581篇
  2017年   455篇
  2016年   512篇
  2015年   538篇
  2014年   705篇
  2013年   818篇
  2012年   542篇
  2011年   741篇
  2010年   627篇
  2009年   798篇
  2008年   695篇
  2007年   768篇
  2006年   688篇
  2005年   649篇
  2004年   547篇
  2003年   419篇
  2002年   402篇
  2001年   319篇
  2000年   261篇
  1999年   237篇
  1998年   223篇
  1997年   154篇
  1996年   163篇
  1995年   151篇
  1994年   149篇
  1993年   125篇
  1992年   135篇
  1991年   97篇
  1990年   102篇
  1989年   97篇
  1988年   64篇
  1987年   61篇
  1986年   53篇
  1985年   60篇
  1984年   107篇
  1983年   79篇
  1982年   80篇
  1981年   61篇
  1980年   56篇
  1979年   40篇
  1978年   23篇
  1977年   25篇
  1976年   17篇
  1975年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
992.
Impact of phosphate solubilizing bacteria along with soil phosphatase activity on phosphorous cycle was found to be quiet interesting in the Sundarban mangrove ecosystem. Soil phosphatase activity showed a decreasing pattern with increase in depth [soil phosphatase activity (μg pnp produced g?1 dry wt of soil) = 906.85 – 5.6316 Depth (cm)] from the deep forest region of the Sundarban forest ecosystem. Soil salinity showed a very little effect on soil phosphatase activity whereas soil temperature and pH was found to show significant impact on the soil phosphatase activity. This ensured that the microbes associated with phosphate mineralization present in the Sundarban forest ecosystem are more tolerant to fluctuation in salinity than that of temperature and pH. A direct correlation was perceptible between the number of phosphate solubilizing bacteria and phosphatase activity in the soil during the study period from 2007 to 2012. Soil phosphate concentration was found to be directly governed by the soil phosphatase activity [The regression equation is: avg PO4?3-P (μg g?1 dry wt of soil) = 0.0311 + 0.000606 soil phosphatase activity (μg pnp produced g?1 dry wt of soil); R2 = 63.2%, p < 0.001, n = 62].  相似文献   
993.
994.
The MRE11‐RAD50‐NBS1 (MRN) complex is essential for the detection of DNA double‐strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17‐dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1‐dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.  相似文献   
995.
Autophagy is essential for successful white adipocyte differentiation but the data regarding the timing and relevance of autophagy action during different phases of adipogenesis are limited.  相似文献   
996.

Background

Scavenger receptor CL-P1 (collectin placenta 1) has been found recently as a first membrane-type collectin which is mainly expressed in vascular endothelial cells. CL-P1 can endocytose OxLDL as well as microbes but in general, the endocytosis mechanism of a scavenger receptor is not well elucidated.

Methods

We screened a placental cDNA library using a yeast two-hybrid system to detect molecules associated with the cytoplasmic domain of CL-P1. We analyzed the binding and endocytosis of several ligands in CL-P1 transfectants and performed the inhibition study using tyrphostin A23 which is a specific inhibitor of tyrosine kinase, especially in μ2-dependent endocytosis and the site-directed mutagenesis in the endocytosis YXXΦ motif in CL-P1 cytoplasmic region. Furthermore, the SiRNA study of clathrin, adaptor AP-2 and dynamin-2 during the endocytosis of OxLDL in CL-P1 transfectant cells was carried out.

Results

We identified μ2 subunit of the AP-2 adaptor complex as a molecule associated with the cytoplasmic region of CL-P1. We demonstrated that AP-2μ2 was essential for CL-P1 mediated endocytosis of OxLDL in CL-P1 transfectant cells and its endocytosis was also mediated by clathrin, dynamin and adaptin complex molecules.

Conclusions

Tyrosine-based YXXΦ sequences play an important role in CL-P1-mediated OxLDL endocytosis associated with AP-2μ2.

General Significance

This might be the first finding of the clear endocytosis mechanism in scavenger receptor CL-P1.  相似文献   
997.

Background

AHSP is an erythroid molecular chaperone of the α-hemoglobin chains (α-Hb). Upon AHSP binding, native ferric α-Hb undergoes an unprecedented structural rearrangement at the heme site giving rise to a 6th coordination bond with His(E7).

Methods

Recombinant AHSP, WT α-Hb:AHSP and α-HbHE7Q:AHSP complexes were expressed in Escherichia coli. Thermal denaturation curves were measured by circular dichroism for the isolated α-Hb and bound to AHSP. Kinetics of ligand binding and redox reactions of α-Hb bound to AHSP as well as α-Hb release from the α-Hb:AHSP complex were measured by time-resolved absorption spectroscopy.

Results

AHSP binding to α-Hb is kinetically controlled to prevail over direct binding with β-chains and is also thermodynamically controlled by the α-Hb redox state and not the liganded state of the ferrous α-Hb. The dramatic instability of isolated ferric α-Hb is greatly decreased upon AHSP binding. Removing the bis-histidyl hexacoordination in α-HbH58(E7)Q:AHSP complex reduces the stabilizing effect of AHSP binding. Once the ferric α-Hb is bound to AHSP, the globin can be more easily reduced by several chemical and enzymatic systems compared to α-Hb within the Hb-tetramer.

Conclusion

α-Hb reduction could trigger its release from AHSP toward its final Hb β-chain partner producing functional ferrous Hb-tetramers. This work indicates a preferred kinetic pathway for Hb-synthesis.

General significance

The cellular redox balance in Hb-synthesis should be considered as important as the relative proportional synthesis of both Hb-subunits and their heme cofactor. The in vivo role of AHSP is discussed in the context of the molecular disorders observed in thalassemia.  相似文献   
998.

Background

Signaling messengers and effector proteins provide an orchestrated molecular machinery to relay extracellular signals to the inside of cells and thereby facilitate distinct cellular behaviors. Formations of intracellular macromolecular complexes and segregation of signaling cascades dynamically regulate the flow of a biological process.

Scope of review

In this review, we provide an overview of the development and application of FRET technology in monitoring cyclic nucleotide-dependent signalings and protein complexes associated with these signalings in real time and space with brief mention of other important signaling messengers and effector proteins involved in compartmentalized signaling.

Major conclusions

The preciseness, rapidity and specificity of cellular responses indicate restricted alterations of signaling messengers, particularly in subcellular compartments rather than globally. Not only the physical confinement and selective depletion, but also the intra- and inter-molecular interactions of signaling effectors modulate the direction of signal transduction in a compartmentalized fashion. To understand the finer details of various intracellular signaling cascades and crosstalk between proteins and other effectors, it is important to visualize these processes in live cells. Förster Resonance Energy Transfer (FRET) has been established as a useful tool to do this, even with its inherent limitations.

General significance

FRET technology remains as an effective tool for unraveling the complex organization and distribution of various endogenous signaling proteins, as well as the spatiotemporal dynamics of second messengers inside a single cell to distinguish the heterogeneity of cell signaling under normal physiological conditions and during pathological events.  相似文献   
999.
This study investigated the environmental restoration effects of Ranunculus sceleratus in a sewage system microcosm trial, including the removal of pollutants and algal inhibition. We compared the removal of pollutants by R. sceleratus in a eutrophic sewage system in the presence and the absence of algae. The rate of removal without algae was 16.2–20.5% of that with algae. NH4+N was removed most readily by R. sceleratus. The effects of R. sceleratus on the growth of Microcystis aeruginosa were also investigated in two allelopathic modes. The level of algal inhibition after the addition of an extract of Ranunculus scleratus was 57.1–78.9% greater than that in a co-culture test. To understand the role of allelopathy interference with algal development, we also determined the total flavonoid contents of plants, which ranged from 3.57 g to 20.19 g per plant. The cell density of Microcystis aeruginosa was negatively correlated with the total flavonoids in R. sceleratus, although aquatic macrophytes may contain other allelochemicals involved with algal inhibition in addition to flavonoid compounds. The environmental effects of R. sceleratus were significantly correlated with its growth stage (or water retention time), plant height, and biomass. This study suggests that R. sceleratus has potential for the low-effort and sustainable management of freshwaters, particularly the removal of nutrient pollutants and the reduction of excessive algal growth, which may be attributable to allelochemicals such as flavonoids. The in situ environmental restoration effects of R. sceleratus require further investigation at the ecosystem level.  相似文献   
1000.
Skotomorphogenic development is the process by which seedlings adapt to a stressful dark environment. Such metabolic responses to abiotic stresses in plants are known to be regulated in part by microRNAs (miRNAs); however, little is known about the involvement of miRNAs in the regulation of skotomorphogenesis. To identify miRNAs at the genome-wide level in skotomorphogenic seedlings of turnip (Brassica rapa subsp. rapa), an important worldwide root vegetable, we used Solexa sequencing to sequence a small RNA library from seedlings grown in the dark for 4 days. Deep sequencing showed that the small RNAs (sRNAs) were predominantly 21 to 24 nucleotides long. Specifically, 13,319,035 reads produced 359,531 unique sRNAs including rRNA, tRNA, miRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and unannotated sRNAs. Sequence analysis identified 96 conserved miRNAs belonging to 36 miRNA families and 576 novel miRNAs. qRT-PCR confirmed that the miRNAs were expressed during skotomorphogenesis similar to the trends shown by the Solexa sequencing results. A total of 2013 potential targets were predicted, and the targets of BrmiR157, BrmiR159 and BrmiR160 were proved to be regulated by miRNA-guided cleavage. These results show that specific regulatory miRNAs are present in skotomorphogenic seedlings of turnip and may play important roles in growth, development, and response to dark environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号